Понятие о криоскопической и криогидратной температурах Чистая вода в обычных условиях замерзает при 0°С. Свободная вода в тканях водного сырья является растворителем для минеральных солей и органических веществ, образуя жидкий тканевый сок и более вязкие клеточные коллоидные структуры, замерзающие при более низкой температуре. Начальная температура замерзания тканевого сока называется криоскопической и зависит от его концентрации. Криоскопическая температура — переменная величина, так как при кристаллизации льда концентрация невымороженной части возрастает, что обуславливает дальнейшее понижение температуры замерзания. Ввиду переменности криоскопической температуры правильнее говорить о начальной криоскопической температуре, под которой понимается температура, соответствующая началу льдообразования в продукте.
Начальная криоскопическая температура пресноводных рыб составляет от -0,5 до -0,9°С, морских от -0,8 до -2,0°С, беспозвоночных (моллюсков, ракообразных и др.) — от -1,0 до -2,2°С. При замораживании живой рыбы начальная криоскопическая температура ниже, чем у снулой. Однако в технических расчетах ее значение принимается равной -1°С.
Начальная криоскопическая температура соленых, вяленых и холоднокопченых рыбопродуктов со значительным количеством поваренной соли находится в пределах от -8 до -15°С.
Полное превращение тканевой влаги в лед из-за трудностей вымораживания адсорбционно связанной воды происходит при криогидратной (эвтектической) температуре в интервале -55... -65°С. В настоящее время имеются данные, что жидкая фаза (в мясе трески) сохраняется при -68°С и полностью вымораживается только при -70°С.
Влияние холода на микрофлору рыбы, ферментативные и химические процессы в тканях. Консервирующее действие холода усиливается по мере понижения температуры продукта и увеличения количества вымороженной воды. При охлаждении до начальной криоскопической температуры жизнедеятельность микрофлоры и скорость автолитических процессов существенно замедляются.
Показателем скорости размножения микроорганизмов, вызывающих порчу рыбы, обычно является продолжительность генерации g — время, необходимое для одного акта деления клетки на 2. При данной температуре ее можно определить по формуле
где g — продолжительность генерации, ч; В — количество микроорганизмов в тканях рыбы, при котором наступает порча, клеток/г; b — начальное количество микроорганизмов в тканях рыбы, клеток/г; τ — время, в течение которого начальное количество микроорганизмов увеличивается до значения В, ч.
- История развития холодильных технологий
- Роль и значение холода в ТПВС (часть 2)
- Роль и значение холода в ТПВС (часть 1)
- Способы и средства транспортировки гидробионтов (часть 3)
- Способы и средства транспортировки гидробионтов (часть 2)
- Способы и средства транспортировки гидробионтов (часть 1)
- Пороки рыбы-сырца (часть 2)
- Пороки рыбы-сырца (часть 1)
- Определение качества рыбы-сырца при приемке
- Заготовка рыбы-сырца
- Длительное сохранение живой товарной рыбы (часть 3)
- Длительное сохранение живой товарной рыбы (часть 2)
- Длительное сохранение живой товарной рыбы (часть 1)
- Способы транспортировки живой рыбы (часть 4)
- Способы транспортировки живой рыбы (часть 3)
- Способы транспортировки живой рыбы (часть 2)
- Способы транспортировки живой рыбы (часть 1)
- Заготовка живой рыбы (часть 2)
- Заготовка живой рыбы (часть 1)
- Качество и безопасность рыбы и нерыбных объектов промысла (часть 2)
- Качество и безопасность рыбы и нерыбных объектов промысла (часть 1)
- Крабы
- Раки и креветки
- Головоногие моллюски
- Брюхоногие моллюски
- Двустворчатые моллюски
- Морские ежи
- Млекопитающие и морские кубышки
- Донные, придонные рыбы и водоросли
- Животные и растения залива Петра Великого